Highly reversible lithium/dissolved polysulfide batteries with carbon nanotube electrodes.
نویسندگان
چکیده
منابع مشابه
Encapsulation of S/SWNT with PANI Web for Enhanced Rate and Cycle Performance in Lithium Sulfur Batteries
Lithium-sulfur batteries show great potential to compete with lithium-ion batteries due to the fact that sulfur can deliver a high theoretical capacity of 1672 mAh/g and a high theoretical energy density of 2500 Wh/kg. But it has several problems to be solved in order to achieve high sulfur utilization with high Coulombic efficiency and long cycle life of Li-S batteries. These problems are main...
متن کاملImproving the capacity of lithium-sulfur batteries by tailoring the polysulfide adsorption efficiency of hierarchical oxygen/nitrogen-functionalized carbon host materials.
The use of monolithic carbons with structural hierarchy and varying amounts of nitrogen and oxygen functionalities as sulfur host materials in high-loading lithium-sulfur cells is reported. The primary focus is on the strength of the polysulfide/carbon interaction with the goal of assessing the effect of (surface) dopant concentration on cathode performance. The adsorption capacity - which is a...
متن کاملSandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries.
A functionalized graphene sheet-sulfur (FGSS) nanocomposite was synthesized as the cathode material for lithium-sulfur batteries. The structure has a layer of functionalized graphene sheets/stacks (FGS) and a layer of sulfur nanoparticles creating a three-dimensional sandwich-type architecture. This unique FGSS nanoscale layered composite has a high loading (70 wt%) of active material (S), a hi...
متن کاملAn Effective Nitrogen Doping Technique for Improving the Performance of Lithium Ion Batteries with CNT Based Electrodes
Lithium ion batteries are among the most used rechargeable batteries in the world. Carbon nanostructures including carbon nanotubes (CNTs) are considered as important electrode materials for this kind of batteries. Therefore improving the performance of these carbon based electrodes in Lithium ion batteries is an important issue and attracts much attention in the battery community. In this manu...
متن کاملFree standing acetylene black mesh to capture dissolved polysulfide in lithium sulfur batteries.
Herein, we report a cheap and simple approach to solve the polysulfide dissolution problem in lithium sulfur batteries. It was interestingly revealed that a simple insertion of acetylene black mesh enabled us to obtain the capacity of 1491 mA h g(-1) at initial discharge and 1062 mA h g(-1) after 50 cycles.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Angewandte Chemie
دوره 52 27 شماره
صفحات -
تاریخ انتشار 2013